Overview of the AFRL/NASA Flywheel Program

"Advanced Energy Storage for NASA and USAF missions"

Aerospace Flywheel Workshop
19 October 2000

Outline

- Introductory remarks
- Applications and Goals
- AFRL/NASA Program
 - Flywheel Systems
 - Research & Technology Efforts
- Concluding Remarks

Applications and Goals

Like Batteries, No one size fits all

NASA Explorer, New Millenium, & Discovery Classes

Small Rovers

Medium)

Starlite

Flywheel Technology Development Strategy

Increasing specific energy

Sub-critical Rotor designs, metal hub, large margins Super-critical Rotors, composite hubs, higher RPM/ Integrated mag bearings & motor/generators higher RPM, shunt capable, wider temp range

Incorporate advanced composite materials, improved magnetics, etc.

range range littles & applications
Increasing capabilities & applications

Technology Metrics/Goals

Metric	Existing Battery Systems**	Flywheel SOA*	Flywheel Goals
Effective, Usable Specific Energy (SE) in LEO	<3 Whr/lb	~10 Whr/lb	>20 Whr/lb (Near Term) 100 – 200 Whr/lb (Long Term)
Cycle life (at above SE levels)	~30,000	TBD (estimated at 50,000)	>75,000
Energy Storage (turn around) Efficiency	68-80%	85%	>90%
Cost	\$0.5-3M	Comparable	> 25% reduction

^{*} Based on laboratory units extrapolated to flight configuration. Current TRL ~ 4.3-5.3

^{**} Includes associated hardware (e.g., battery regulator)

AFRL/NASA Program Structure

National Aerospace Flywheel Program Players

3 Legs of the AFRL/NASA Program

SYSTEM DEVELOPMENT: Guides Base R&T

- FESS 1st Unit Flight on the International Space Station
- FACETS Ground demo of integrated power and attitude control system (IPACS)

BASE R&T: Supports System Development

- Flywheel Testbed and Century Flywheel Development
- Component technology research
 - Bearing systems
 - Power train
 - Composite rotors
- Flywheel Rotor Safe Life Technologies Development

GOVERNMENT FACILITIES: Enables/Enhances System and R&T Work

- Gov't facilities and experts work with industry and academia
 - flywheel testbed, bearing test rigs, electrical test beds, NDE, etc.
 - Leverage Technology Base (Aero & Space)

System Developments

FLYWHEEL ENERGY STORAGE SYSTEM (FESS)

Glenn Research Center

Objective

 Demonstrate flywheel energy storage, power delivery

Approach

 Deploy flywheel energy system (FESS) consisting of a pair of counter-rotating flywheel units and operate for an extended period of time

Status

- GRC/UT-CEM/TRW Team
- Flywheel Module PDR, 9-00
- FY01: FM fabrication & breadboard avionics delivery
- . ISS SPEL Test in 2003
- Deploy 2006

Research & Technology

Flywheel System Test Bed

Objective

Build a testbed and lab test a FES system to gain experience w/ energy storage & single axis torque control as a foundation for mid-size wheel development

Approach

U.S. Flywheels/TRW Development Units(2)

- ~ 500 Whr
- Magnetic & mechanical bearings

NASA GRC Testbed

- dSPACE based developmental controls
- Single unit and air table capability

Plans

- Support FESS Development
- Demo single axis momentum transfer (2 Units)
- Support Century Flywheel technology evaluation

Status

- Unit #1 in test at GRC testbed facility
- Hardware upgrades in progress for 2 units

Century Flywheel Program

Objective

DEVELOP TECHNOLOGY DEMONSTRATOR THAT MEETS THE NEEDS OF "MID-SIZE" LEO SPACECRAFT (~700 W to ~4 KW) WITH ENERGY STORAGE REQUIREMENTS OF 300-700 WHrs

Approach

- PERFORMANCE GOALS ARE HIGH SPECIFIC ENERGY, HIGH EFFICIENCY AND LOW COST IN AN "IPACS" CONFIGURATION
- A PHASED IMPLEMENTATION OF ADVANCED TECHNOLOGIES INTO A TARGET SYSTEM PROTOTYPE FOR SATELLITE APPLICATION
- COMPONENT TECHNOLOGY DEVELOPMENT IS LEVERAGED WITH NASA/AFRL NRA'S, SBIR'S AND CCDS GRANT'S

Plans In FY01

- DEFINE MISSION/SATELLITE REQUIREMENTS AND FLOW DOWN TO FLYWHEEL SYSTEM AND COMPONENTS IN COOPERATION WITH MISSION CENTERS AND PRIMES
- BEGIN CONCEPTUAL DESIGN OF PROTOTYPE
- EVALUATE COMPONENT TECHNOLOGIES FOR USE IN FIRST UNIT

Status

INITIATING CONTACT WITH MISSION CENTERS AND PRIMES

Base R&T Efforts for FY01

Glenn Research Center

System Research

- Integrated System Design Tool
- System Momentum Control
- Real Time Simulation

Component Research

- Magnetic Bearings
 - **Advanced Bearing Control**
 - Passive (Repulsive) Bearings
- **Power Train**
 - Optimized Mtr/Gen Control
 - Advanced Mtr/Gen
 - **High Speed Concepts**

Composite Rotors

- Rotor Safe-Life Program
 - Life Prediction Development
 - **Material Testing**
 - Rotor Cyclic Spin Testing
 - NDE Techniques
- Health Monitoring Development
- Composite Rotor/Hub Development
- Century-Class Rotor Design

Concluding Remarks

Glenn Research Center

- A broad range of NASA/USAF applications exist for which Aerospace Flywheels are a significantly enhancing or enabling technology – FES, IPACS, UPS, Peaking, Vehicles
- Exciting developments planned in 2001:
 - Rotor Safe-Life Program Implement Working Group
 - Flywheel Testbed 2 unit momentum mode test
 - FACETS Phase 2
 - FESS Development Flywheel Module Build
- Technology efforts will increasingly focus on smaller flywheels
 - Many missions need "century class" flywheels (100's of whrs)
 - The Century Flywheel Program will provide direction and focus to technology development
- The AFRL/NASA Aerospace Flywheel Program will continue to cooperate with other government agencies and to leverage other program opportunities such as; NRA's, SBIR's, NASA CCDS

Backup Slides

Aerospace Flywheel Challenges

Flywheel Energy Systems

Glenn Research Center

Flywheel Energy Storage (FES)

- 2, counter-rotating Flywheels
- Energy storage
- Replace some Power Management and Distribution (PMAD) functions

Integrated Power & Attitude Control System (IPACS)

- Array of \geq 2 FWs
- Energy storage & Attitude control torque
- Replace some PMAD

E.g., A
Tetrahedral
Arrangement
of 4 FWs, or
4 pairs of
FWs

Flywheel Components

Flywheel **System**:

Component interaction,
Space environment, Controls,
(micrometeoroids, etc).

Enclosure:

lightweight but stiff, spacecraft mechanical and thermal interface

Motor/Generator:

Reliability, efficiency

Thermal:

passive heat rejection, Esp.: Gimbal mounted concepts

Magnetic Bearings:

the key risk areas, also fault tolerance & design for IPACS

Rotor (Rim, Hub Shaft):

High specific energy (super critical design?), Fatigue Life & "creep", safety W/O containment

Auxiliary Bearings:

High speed, high impact, life Esp.: Launch environment

— Electronics:

IPACS control algorithms, packaging for lightweight